Дифференцируя ω_2 по H, установим, что на плоскости (ω , H) ветвь $\omega_2(H)$ имеет минимум в точке ($\omega_{2\min}$, $H_{2\min}$)

$$H_{2\min} = H_c \left(1 - b \sin \psi\right); \ \omega_{2\min}^2 = 2 \left(\gamma H_c\right)^2 \frac{(r-1) \left(1 + b^2\right) \sin \psi}{(r+1) \left(1 + b^2\right)^{1/2} + 2b}, \tag{15}$$

$$b = (2q)^{-1} \left[-(q+3) + \sqrt{(q+3)^2 + 4q} \right], \ q = \left(\frac{r+1}{2}\right)^2 - 1.$$
(16)

Возникновение минимума у нижней ветви $\omega_2(H)$ соответствует резонансной диаграмме двухосного $A\Phi M$ в закритической области $\psi > \psi_{\kappa}$ (см. рис. 3 работы [²⁴]). При фиксированной частоте ω ВЧ поля из выражений (15) определяются $\psi = \psi_f$ и поле срыва $A\Phi MP H = H_f$, т. е. значения ψ и H, при которых частота соответствует минимуму кривой $\omega_2(H)$. Как ψ_f , так и $(H_f - H_n)$ пропорциональны ω^2 . Разрешая (14) относительно $\sin^2 \psi$, получаем

$$\sin^{2}\psi_{1,2} = \frac{1}{4} \left\{ \frac{\omega_{0}^{4}}{2} \left(\frac{r+1}{r-1} \right)^{2} + 2 \frac{\omega_{0}^{2} (1-z)}{r-1} - (1-z)^{2} \pm \frac{\omega_{0}^{3} \frac{r+1}{r-1}}{\frac{r-1}{4} \left(\frac{r-1}{r-1} \right)^{2}} + 2 \frac{1-z}{r-1} \right\}.$$
(17)

Выражение (17) в силу сделанных приближений не описывает детально поведения резонансных диаграмм, связанного с изменениями $\Delta H < 0,1 \kappa$ и $\Delta \psi < 1^{\circ}$, однако в области, где

$$H^{2} < H_{\pi}^{2} \left(1 + \frac{\omega_{0}^{*}(r+1)^{2}}{8(r-1)} \right), \qquad \omega_{0} = \frac{\omega}{\gamma H_{\pi}},$$
(18)

оно дает простое и качественно правильное описание таких диаграмм.

Сравнение теории с экспериментом

Проведем это сравнение сначала для $T = 1,68^{\circ}$ К.

Систематическое возрастание резонансных полей с увеличением давления, экспериментально наблюдаемое в CuCl₂ · 2H₂O, находится в удовлетворительном согласии с теоретическими зависимостями. Приняв $H_{1p} = H_{11}^{(p)}$ и $H_{2p}^{\gamma} = H_{\pi} (H_{\pi} -$ поле фазового перехода $l_{11} \rightleftharpoons l_{\perp}$), сравним (8) – (11) с экспериментальными данными. Предположив, что $\lambda_z^{||} \gg \lambda_y^{"}$, с учетом $H_1(p, T) \approx H_{\pi}(p, T)$ представим эти выражения в виде, удобном для сравнения с экспериментом:

$$H_{1p} = \left[H_{\pi}^{2}(p, T) - \gamma^{-2} \omega^{2} \frac{r_{0} + 3 + (A_{3} + 3A_{2}) p}{r_{0} - 1 + (A_{3} - A_{2}) p} \right],$$
(19)

$$H_{2p} = H_{n}(p, T) = H_{n}(T) \sqrt{(1 + A_{1}p)(1 + A_{2}p)},$$
(20)
rge $A_{1} \approx \lambda_{2}^{"}\delta^{-1} \approx A_{4}, A_{2} = \lambda_{\mu}^{"}\rho_{0}^{-1}, A_{3} = \lambda_{x}^{"}\rho_{0}^{-1}, r_{0} = \beta_{0}\rho_{0}^{-1}.$

Используя экспериментальные значения H_{2p} (p = 11,2 и 5,2 *кбар*) и H_{1p} $(p = 11,2 \kappa \delta ap)$ при $\gamma = 3 \Gamma cu$ и $T = 1,68^{\circ}$ К, а также значение $r_0 = 2,9$ [¹⁶], найдем $A_1 \approx A_2 \approx 0,022 \kappa \delta ap^{-1}, A_3 = 0,3 \kappa \delta ap^{-1}$. Учитывая значение $\delta_0 = \chi_{\perp}^{-1} = 2 \cdot 10^{-3}$ и $\rho_0 \approx 6,5$ [¹⁷] для CuCl₂ · 2H₂O, найдем $\lambda_z^{*} = 44 \kappa \delta ap^{-1}$, $\lambda_y^{"} = 0,14 \kappa \delta ap^{-1}, \lambda_x^{"} = 2 \kappa \delta ap^{-1}$. Поскольку $T_N \sim \delta$, T_N зависит от давления. Найденные значения $\lambda_y^{"}$ и $\lambda_x^{"}$ хорошо согласуются с оценочными значениями магнитоупругих постоянных $\lambda \sim (1 \div 10^{-8}) \kappa \delta ap^{-1}$, в то время как значение $\lambda_z^{"}$ на порядок превышает их максимальную оценку, что обусловлено, видимо, большей чувствительностью обменных взаимодействий к уменьшению межатомных расстояний при увеличении давления по сравнению с релятивистскими. В результате проведенного нами учета зависимости

55

обменного параметра δ от давления полученные нами и авторами [¹⁷] значения λ''_y и λ''_x несколько различаются, однако порядки этих величин остались прежними. Теоретические зависимости $H_{2p}(p)$, $H_{1p}(p)$, построенные согласно (19) и (20) при найденных значениях λ''_z , λ''_y , λ''_x , представлены на рис. З и находятся в согласии с экспериментальными данными. Они хорошо передают уменьшение разности $H_{2p} - H_{1p}$ и увеличение резонансных полей H_{1p} и H_{2p} с увеличением давления p. Сравним теперь экспериментальные зависимости ψ_i и поля срыва $A\Phi MP$ H_i от давления и частоты с теоретическими. Как следует из (15), теоретические зависимости этих величин можно представить в виде

$$H_{f} = H_{\pi} \left[1 - B \omega^{2} \left(\gamma H_{\pi} \right)^{-2} \right], \quad \psi_{f} = A \omega^{2} \left(\gamma H_{\pi} \right)^{-2}, \tag{21}$$

где коэффициенты *B*(*p*) и *A*(*p*) легко находятся из (15). При сравнении (21) с экспериментом необходимо учесть, что параметр *r* зависит от давления следующим образом:

$$r = (r_0 + A_3 p) (1 + A_2 p).$$
 (22)

Теоретические изохронные и изобарные зависимости представлены на рис. З и 4 и удовлетворительно описывают эксперимент. В частности, первая формула (21) хорошо описывает уменьшение разности $H_{\rm II} - H_i$ с увеличением давления.

Сравним теперь выражение (17) с данными эксперимента. Подставляя в (17) значения $H_{\rm m}(p, T)$ вместо $H_{\rm m}$ и учитывая зависимость r от давления (22), убеждаемся, что в области (18) выражение (17) достаточно хорошо количественно описывает зависимость $H_{\rm p}(\phi)$ на частотах 4,5—4,88 Γeq при давлениях вплоть до $p \approx 5 \kappa 6 a p$.

Наконец, учитывая (2), (20) и равенство $A_1 = A_2$, находим, что величина интервала $\Delta H = H' - H_{\pi} = 4\pi H_{\pi} \chi_{\perp}$, в котором промежуточное состояние термодинамически стабильно, в пределах точности расчета не зависит в CuCl₂ · 2H₂O от давления.

Прежде чем проводить дальнейшее сравнение теории с экспериментом, уточним природу наблюдаемого поглощения при p = 0. Величины бо́льшего резонансного поля на частоте у2 = 3,14 Гец и резонансного поля на частоте $v_1 \approx 0,7$ Гец равны $H_{pv_2} \approx H_{pv_1} \approx H_{\pi} = 6,7$ кэ при $\psi = 0$ и соответствуют значению поля фазового перехода $l_{\parallel} \rightleftharpoons l_{\perp}$ при $T = 1,68^{\circ}$ К [²⁵], вследствие чего можно сделать вывод, что они сбусловлены поглощением в промежуточном состоянии (ПС), подробно проанализированном в [¹⁶]. Меньшие резонансные поля на частотах $v_2 = 3,14 \Gamma z u$ $v_3 = 4,88 \Gamma z u$ лежат в области, где $H_{\rm p} < H_{\rm n}$, и обусловлены поглощением в однородной фазе l_{ll}. Сложнее объяснить природу поглощения в бо́льшем резонансном поле на частоте v₃ = 4,88 Гец. При значениях угла ф, близких к нулю, наблюдаемая экспериментально резонансная линия становилась настолько слабой, что ее положение нельзя было надежно определить. Для выяснения природы этой линии определим по формулам (20), (21) работы [16] значение поля $H_2(T)$, ограничивающего снизу область устойчивости однородной фазы l_{\perp} . Как видно из рис. 1, поле, соответствующее максимуму изогоны $v_3 = 4,88 \, \Gamma eq$, равно $H_m = 6,82 \, \kappa s$. Принимая $H_{\nu} = \gamma^{-1} v = 0,33 \, \kappa s$ (для у в Ггц), $H_{n0} = 6,5 \kappa$, находим $H_2 = 6,53 \kappa$ при T = 1,68° К. Резонансное поле для фазы l_{\perp} на частоте 4,88 Гец находится в пределах $H_{2p} = 6,73 \ \kappa \vartheta > 6,70 \ \kappa \vartheta = H_{\Pi}$. Интервал $\Delta H = H' - H_{\Pi} = 4\pi \chi_{\perp} H_{\Pi}$ реализации ПС в области $T \le 1,68^{\circ}$ К мало изменяется и по теоретической оценке составляет около 40 э [¹⁶]. Этот интервал охватывает участок нижней резонансной ветви однородной фазы l_{\perp} , заключенный между частотами ω_{\perp} ($H_{\rm n}$) = $= 4,62 \ \Gamma e u < \omega < \omega_{\perp} (H') = 5,03 \ \Gamma e u$. В тех же интервалах частот и полей существует ветвь резонансного поглощения, обусловленная промежуточным

56